INNOVATIVE METAL FORMING
A 100% EMPLOYEE-OWNED COMPANY

METAL SPINNING: TOOLING

Much of the accuracy of a metal spinning job depends on the workmanship and the quality put into the mandrel. Carefully selected maple, specially kiln-dried and expertly put together in properly glued laminations, is the most satisfactory material from which wooden mandrels can be made. Simple spinning jobs may require only one mandrel which is made to conform to the shape desired.

For prototype and limited production quantities using most common materials, simple wooden tooling is sufficient. When more difficult-to-form alloys or longer production runs are contemplated, steel or composition tooling is used. Even in these cases, the necessary mandrels are usually produced by simple turning and machining, and do not require the services of highly skilled, expensive tool and die or pattern makers. Low Cost Tooling is the metal spinners keynote!

A comparison between two identical parts, one made by press forming and the other by spinning, illustrates the step-saving advantages of automatic metal spinning over conventional metal forming for some applications. The standard method of press forming the part requires eight steps, as opposed to only three steps for spinning. An added benefit is that tooling costs for spinning are a fraction of the tooling costs for press forming.

For certain components, the best approach is often a combination of processes. The cross-section of a particular part might be heavy in only one or two areas. In this case, it might be possible to spin a piece of sheet stock to the required contour, then weld on readily available ring or bar stock and finish machine at a substantial saving in production time and material costs. Some changes in design might have to be made with this approach, but the important criterion is that the part fulfills the same function rather than has exactly the same appearance. For instance, a particular forging might have sharp edges and corners, whereas the same part made by spinning would require radii of 1 - 1 1/2 times the metal thickness as a rule of thumb.

History of Metal Spinning
Description
General
Advantages of Metal Spinning
Tooling
Spinning/Deep Drawing
Design Suggestions

The text in this primer is printed with permission of the PMA.

metal spinning: spun metal parts



Contact Us Home Page ISO Certificate About Us Subsidiaries Anodizing Processes Materials Shapes Capacities Cremation Urns FPK